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Jean-Louis Hudry (jl.hudry@ed.ac.uk)

University of Edinburgh, UK

Abstract (734 words)

The expression ‘discrete time’ or ‘continuous time’ often refers to the empirical description of a so-called physical time. If we say that physical time is discrete, then we suppose that an empirical time is composed of indivisible instants, such that the passage from one instant to another implies an irreducible jump. By contrast, if we say that physical time is continuous, then we replace the jump between two instants with a smooth and uninterrupted process. Such definitions, although imprecise, make sense because of their intuitive contents. Yet, this paper aims to show that these empirical conceptions of time remain unjustified. 

We need to make a distinction between two conceptions of time. A first definition is more about the perception of time than about time itself. I am sitting at my desk at a present time t1 only because I perceive the instant t1 as present. That is, any past, present or future tense is about a tensed perception of time. On the contrary, a definition of time is tenseless when defined through a mathematical structure of numbers. Thus, a discrete, dense, or continuous time does not refer to how we perceive a temporal process but how we define arithmetical models of discreteness, denseness, or continuity. In this sense, discrete time is a model isomorphic (i.e. structurally identical) to a discrete series of natural numbers, such that the instants t1 and t2 are positive integers. Likewise, a model of dense time is isomorphic to a dense series of rational numbers, meaning that there is always a rational number between any two rational numbers. Applied to time, we may then say that there is no instant next to another one. Finally, the model of continuous time is isomorphic to a continuous series of real numbers. Arithmetical continuity defines a real number as the limit of an infinite series of rational numbers, such that the infinite set of limits is a continuous set of real numbers. Notice that we do not deal with the same type of infinite series: a series of real numbers is uncountably infinite, because not in one-one correspondence (i.e. in bijection) with a countably infinite series of rational numbers. We may then show that, in measure theory, the measure of a continuous set is non-additive, in the sense that it is not equal to the sum of the measures of all its dense subsets. Applied to time, this means that the measure of a continuous temporal interval is not equal to the sum of the measures of all its dense temporal subintervals. 

These three models of time, whose abstractions mirror set‑theoretic structures, present a difficulty in relation to a physical definition of time. In other words, how is it possible to bridge the gap between a mathematical model of time and a concept of time as defined in classical physics? Can we claim that only one particular model is true, at the expense of the others, owing to a physical justification? Russell, in Our Knowledge of the External World (1926), rejects this argument and states that it makes no sense to distinguish continuous time from dense time, except through pure arithmetical arguments. Yet, his position has been criticised by contemporary philosophers. Grünbaum, in ‘The Resolution of Zeno’s Metrical Paradox of Extension’ (1957, 1973), writes against Russell that continuous time or space is the best model, insofar as arithmetical continuity, unlike denseness, avoids Zeno’s paradox of plurality. Likewise, Newton‑Smith’s The Structure of Time (1980) states that, on empirical grounds, continuous (or dense) time is a better model than discrete time. 

The present paper objects to both Grünbaum’s and Newton-Smith’s positions. First, Grünbaum’s argument associates an extentionless arithmetical structure with Zeno’s geometric concept of an extended interval, and thereby distorts the intrinsic definition of an arithmetical model. As well, Newton‑Smith disputably justifies his rejection of the extensionless model of discrete time through his criticism of an empirically extended discrete time. Consequently, by defending some philosophical preferences for a particular model, both Grünbaum and Newton‑Smith define additional properties that are at odds with the set-theoretic definition of a discrete, dense or continuous time. The distinctions that we draw between each model must be of a purely arithmetical nature, meaning that set‑theoretic properties are unable to define, or refer to, a concept of extension, whether geometric or empirical. Eventually, our abstract models of time do not coincide, despite the appearances, with our intuitive concept of perceptual time. 
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